Urea-FASP (Filter Aided Sample Preparation)

Overview:

In-solution protein digestion on a molecular cutoff spin column ${ }^{1-4}$. Its two major advantages are the possibility to pre-concentrate proteins from dilute mixtures (large volumes) and to remove mass spectrometry incompatible substances (SDS, Triton) before digestion. FASP should only be used with relatively large protein sample amounts ($>=50 \mu \mathrm{~g}$), since it suffers from peptide losses at the spin filter membrane ${ }^{4}$.

Material:

- Vivacon 500 30.000 MWCO spin columns (Sartorius, max. capacity $=500 \mu \mathrm{l}$, dead stop volume $=\sim 5 \mu$ l, use a fixed-angel rotor at max. 10.000 g [Attention: Membrane might break at higher velocities!])
- Urea Wash Solution

8M Urea
100 mM TEAB
pH 8.5

- Urea Reduction + Alkylation Solution (10 ml)

8 M Urea $(60.06 \mathrm{~g} / \mathrm{mol}) \rightarrow 4.85 \mathrm{~g}$
10 mM TCEP $\rightarrow 100 \mu \mathrm{l}$ from 1 M stock
40 mM CAA (Chloroacetamide, $93.5 \mathrm{~g} / \mathrm{mol}) \Rightarrow 0.037 \mathrm{~g}$
100 mM TEAB pH $8.5 \rightarrow 1 \mathrm{ml}$ from 1 M stock
fill up to 10 ml

- Lys-C stock solution
$200 \mathrm{ng} / \mu \mathrm{l}$ solution (in $0.01 \% \mathrm{TFA}$), store at $-20^{\circ} \mathrm{C}$
- Trypsin stock solution
$200 \mathrm{ng} / \mu \mathrm{l}$ solution (in 0.01% TFA), store at $-20^{\circ} \mathrm{C}$

Procedure:

1. Preparation of Vivacon $50030.000 \mathrm{MWCO} \Rightarrow$ Wash twice with $500 \mu \mathrm{l} 70 \%$ isopropanol or 70% ethanol. At all steps always centrifuge 15 min at $10,000 \mathrm{~g}$.
2. Membrane check \& wash:

- Add 500μ Urea wash solution \rightarrow Centrifuge 1 min \rightarrow Check amount of passed trough solution. The membrane is broken, if the majority has passed trough already.
- If the filter is ok proceed with the centrifugation $(10,000 \mathrm{~g}, 15 \mathrm{~min}) \rightarrow$ Discard flowtrough (FT)

3. Apply protein sample ($50-100 \mu \mathrm{~g}$). It should contain at least 6 M urea (if necessary by adding solid urea) \rightarrow Centrifuge $\boldsymbol{\rightarrow}$ Discard FT
4. Add $450 \mu \mathrm{l}$ Urea Reduction + Alkylation solution, mix and incubate for 30 min in the dark at room temperature \rightarrow Centrifuge \rightarrow Discard FT
5. Add 500μ Urea wash solution \rightarrow Centrifuge \rightarrow Discard FT
6. Check remaining volume on membrane. If it is still larger 10μ l extend centrifugation.
7. Add Lys-C at a Lys-C : protein ratio of 1:100 (500 ng per $50 \mu \mathrm{~g}$), mix by mild orbital shaking and incubate for $3-4 \mathrm{~h}$ at $37^{\circ} \mathrm{C}$.
8. Add $80 \mu \mathrm{l} 100 \mathrm{mM}$ TEAB and mix to reduce the urea concentration to at least 1.6 M .
9. Add trypsin at a trypsin : protein ratio of 1:50 ($1 \mu \mathrm{~g}$ per $50 \mu \mathrm{~g}$), mix by mild orbital shaking and incubate over night at $37^{\circ} \mathrm{C}$
10. Replace collection tube and discard the old one.
11. Centrifuge to transfer the peptides to the collection tube. (Undigested proteins will be retained.)
12. To elute remaining peptides from the spin column add $100 \mu \mathrm{l}$, incubate for 5 min under mild orbital shaking and elute by centrifugation.
13. Acidify sample ($\mathrm{pH}<=2$) and proceed with peptide desalting using C18-StageTips.

References:

1. Manza, L. L., Stamer, S. L., Ham, A. L., Codreanu, S. G. \& Liebler, D. C. Sample preparation and digestion for proteomic analyses using spin filters. Proteomics 5, 1742-1745 (2005).
2. Wi[niewski, J. R., Zielinska, D. F. \& Mann, M. Comparison of ultrafiltration units for proteomic and N -glycoproteomic analysis by the filter-aided sample preparation method. Analytical biochemistry 410, 3079
3. Wi[niewski, J. R., Zougman, A., Nagaraj, N. \& Mann, M. Universal sample preparation method for proteome analysis. Nature Methods 6, 359362
4. Liebler, D. C. \& Ham, A.-J. L. Spin filter-based sample preparation for shotgun proteomics. Nature Methods 6, 785; author reply 7856
